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Mesoscopic models for traffic flows are usually difficult to be employed because of the appearance of
integro-differential terms in the models. In this work, a lattice Boltzmann model for traffic flow is introduced
on the basis of the existing kinetics models by using the Bhatnagar-Gross-Krook-type approximation interac-
tion term in the Boltzmann equation and discretizing it in time and phase space. The so-obtained model is
simple while the relevant parameters are physically meaningful. Together with its discrete feature, the model
can be easily used to investigate numerically the behavior of traffic flows. In consequence, the macroscopic
dynamics of the model is derived using the Taylor and Chapman-Enskog expansions. For validating the model,
numerical simulations are conducted under the periodic boundary conditions. It is found that the model could
reasonably reproduce the fundamental diagram. Moreover, certain interesting physical phenomena can be

captured by the model, such as the metastability and stop-and-go phenomena.
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I. INTRODUCTION

In recent years, traffic modeling has become one of the
most exciting fields and attracted many physicists (see [ 1-4],
and references therein). This increasing interest is stimulated
not only by its practical implications for optimizing freeway
traffic, but also by the observed nonequilibrium phase tran-
sitions and various nonlinear dynamical phenomena, such as
the formation of traffic jams [5].

Generally speaking, we can classify the traffic models
into macroscopic, microscopic, and mesoscopic (especially
kinetic) kinds according to the physical ideas. Microscopic
models were mainly originated from cellular automata and
molecular dynamics (see [1,2,6-8], and references therein).
Such models can describe the individual drivers’ behavior
and their interactions at a high level of details. For instance,
the lane-changing behavior is usually described as a detailed
chain of drivers’ decisions. Evidently microscopic models
are mostly used for detailed studies. The most severe draw-
back of microscopic models is that they will consume an
enormous amount of CPU time in simulation if the car num-
ber is large. For car-following models, it is because we need
to solve a large number of difference equations, and for cel-
lular automaton models, it is needed to repeat the simulation
many times in order to improve the signal-to-noise ratio and
obtain the statistically meaningful results.

High computational efficiency can be reached by using
macroscopic traffic models. Macroscopic traffic models were
constructed based on the heuristic analogies with the hydro-
dynamic equations (see [1-3,9]). They consist of equations
for a few aggregate quantities, such as the spatial density p,
the average velocity V, and additional velocity moments. The
computational requirement for the macroscopic models
mainly depends on the numerical scheme, not on the number
of vehicles. Therefore, higher computational efficiency can
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be obtained. Due to their heuristic origin, even for the most
advanced macroscopic models, there exist some shortcom-
ings [3]. One of the most well-known arguments is the iso-
tropic problem [10] of some previous models [11].

Mesoscopic models belong to the class of stochastic ones
which follow the ideas of the gas Kkinetics theory (see
[1-3,12], and references therein). They are mainly based on
Boltzmann- or Enskog-type equations for the single vehicle
state probability function. From this function, one can calcu-
late the macroscopic flow quantities through averaging and
obtain the evolutionary rules governing these quantities.
Based on the statistics of the microscopic interactions
mechanism, mesoscopic models have almost the same rigor-
ous foundations as the microscopic models, and their param-
eters are physically meaningful. In principle, the computa-
tional efficiency of kinetics models should be between the
macroscopic and microscopic models. But, because of its
integro-differential feature, mesoscopic models are difficult
to be simulated numerically via direct discretization meth-
ods. Thus, due to their rigorous foundations, mesoscopic
models are often used to derive reasonable macroscopic flow
equations via moment or the Chapman-Enskog method in the
literature [13,43], e.g., Refs. [5,14,15]. There are only a few
papers concerning the direct simulation of the model equa-
tions, such as the modified direct simulation Monte Carlo
method presented in Ref. [16].

On the other hand, the lattice Boltzmann equation (LBE)
method [17-19], which is an innovative computational fluid
dynamics method based on the kinetic theory, has attracted
significant attention recently in the hydrodynamic research
community, especially in the area of complex flows. Histori-
cally, the LBE models evolved from their Boolean counter-
parts, the lattice-gas automata (LGA) [20,21]. The theoretical
framework of the LBE has been rested on the Chapman-
Enskog analysis of the LGA models though various approxi-
mations have been applied, such as the Bhatnagar-Gross-
Krook (BGK) approximation [22]. Until very recently the
formal connection between the lattice Boltzmann equation
and the continuous Boltzmann equation were established
[23,24]. Tt was shown that the lattice Boltzmann equation
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could be considered as a special discretized form of the
Boltzmann equation.

In this work, we intend to construct a lattice Boltzmann
model for traffic flow, which could also be considered as a
discrete version of the continuous kinetic models in analogy
to that in the hydrodynamic research. The rest of the paper is
organized as follows. In Sec. II, we present the basic idea of
the lattice Boltzmann model for traffic flow. The numerical
simulations under the periodic conditions are performed to
validate the model in Sec. III and Sec. IV is devoted to
conclusion and remarks.

II. MODEL DESCRIPTION

A. Brief review of continuous Kinetic traffic models

For outlining the basic idea of our model, we first give a
brief introduction to the framework of the kinetics models
for traffic flow. From a mesoscopic point of view, it is usu-
ally assumed that the state of an individual vehicle « at given
time ¢ can be mathematically represented by points in the
phase space (), where the coordinates are the vehicle posi-
tion x,(), the vehicle velocity v ,(f), and also other quantities
characterizing the type or driving style of the vehicles [25].
Thus we can define phase-space density (the velocity distri-
bution of the vehicles) in analogy to the local one-particle
reduced distribution function in gas kinetics,

+A1/2

fx,v,0)AxAv = — dt’' An(x,v,t"),
t—At/2

where An(x,v,t') denotes the average number of vehicles
that are at a place between x—Ax/2 and x+Ax/2, driving
with a velocity between v—Av/2 and v+Av/2 at a time ¢’
e [t—Ar/2,t+At/2]. Then we can use the phase-space den-
sity f to describe the dynamics of traffic flow, and note that
because we only use the “one vehicle distribution function,”
all the effects due to the correlations between the vehicles are
neglected (i.e., the vehicular chaos assumption). By the defi-
nition of the phase-space density, we have the following re-
lations:

p(x,t):fdvf(x,v,t)

and

q(x,1) = plx,0)V(x,t) = f dvvf(x,v,1).

These relations could be used to obtain the corresponding
macroscopic (average) quantities, i.e., the density p(x,7), the
velocity V(x,1), or the flow g(x,1).

To obtain the equation governing the temporal evolution
of the phase-space density f, we first bring in the well-known
fact that the phase-space density obeys the following conti-
nuity equation:
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where the term (Jf/dr), delineates the variation of f(x,v,?)
due to discontinuous transitions between various states. All
the governing equations in the kinetics models for traffic
flow can be mathematically represented by this equation. Pri-
gogine and Herman proposed the first kinetics model for
traffic flow [12]. They suggested that the transition term
should consist of a relaxation term (Jf/dt),,; and an interac-
tion term (df/ dt);y, in their model. So the model equation can
be written as

af afv) o ( dv) (af) (ﬁf)
—+——+—\f— == +|=) .
ot ox Jv\" dt ot/ a1 It /it

The relaxation term is intended to describe the drivers’ effort
(acceleration process) toward their desired speed, and the
interaction term to describe the deceleration of vehicles to
the velocity of the front car in case that it moves slower and
cannot be overtaken.

Let us first consider the relaxation term. Instead of an
individual speed adjustment, Prigogine et al. suggested a col-
lective relaxation of the actual velocity distribution toward a
“desired” velocity distribution fy(x,v,#), which is a math-
ematical idealization of the goals that the driver population
strives to realize [12]. So the term %(f’fi—lz) can be ignored in
the model and the relaxation term has the form

(a;f) __f(xsv’[)_f(](X,U,t)
ot rel_ T ’

where 7 denotes the relaxation time.
For describing the interaction process, Prigogine et al.
suggested the following Boltzmann-type equation:

Y o t——

—f(x,v,t)f do(1-p)v - o)f(x,0.1), (1)
0

ie.,

<&_f> =(1 —p)f(x,v,t)f do(w-v)f(x,0,1),
at int 0

where p denotes the probability that a slower car can be
overtaken. On the right-hand side of Eq. (1), the first term
corresponds to a situation where a vehicle with speed w>v
must decelerate to the speed v, causing an increase of phase-
space density, while the second term describes a decrease of
phase-space density due to the situation in which vehicles
with the velocity v must decelerate to a velocity w<<v. In
Ref. [12], one can find a more detailed discussion about the
interaction term.
Finally, the Prigogine-Herman model becomes

af I  [f-fo
+v -+
ot ox T

(1=p)p(V-0)f. ()
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Following the pioneering work of Prigogine ef al., some
authors, e.g., Helbing et al. [5,14,26] and Hoogendoorn et al.
[27,28] have renewed the interest for gas-kinetic models re-
cently. Hoogendoorn et al. [28] constructed the generic gas-
kinetic traffic model which can be used to describe almost all
kinds of traffic situations, even the pedestrian flow. Helbing
et al. mainly concentrated on the derivation of the continuum
traffic models and have developed a program package
MASTER based on their model [5,14,26]. Besides the above-
mentioned works, there have been many other important
works recently which we do not describe in detail here (see
Refs. [15,29-36], and references therein).

The drawbacks of the kinetics models are somewhat evi-
dent. Despite their assumptions, such as the vehicular chaos
assumption, there are a relatively large number of unknown
parameters and model relations (e.g., the desired velocity
distribution function f;, and it may be difficult to determine
whether the “desired” velocity is just the desired velocity in
the realistic observation) that need to be estimated from the
observation. Furthermore, their integro-differential-type
model equations are usually difficult to be solved with either
numerical methods or analytical methods.

B. Derivation of the lattice Boltzmann model

In this work, the authors try to simplify the kinetic model
by introducing the BGK-type interaction term and by dis-
cretizing the resultant equation in time and phase space, just
as what has been done in hydrodynamics. With the model, it
is easy and fast to simulate traffic flow numerically. Further-
more, the parameters and model relation of the model are
physically meaningful. First, we consider it reasonable to
simplify the interaction term and the individual or collective
relaxation term in the kinetics models [e.g., the right-hand
side of Eq. (2)] by using a uniform relaxation term toward
the local equilibrium velocity distribution [3]. Thus, the
BGK-type equation becomes

L Nl 3)

>

ot ox A

where g is the local equilibrium velocity distribution func-
tion. In this context, we use the function g, to describe the
local equilibrium state resulting from the competition be-
tween the two opposite sides in a local region, i.e., the driv-
ers’ effort toward their desired velocity and the interaction
with other drivers. Naturally, A is the relaxation time. Mean-
while, g, obeys the following conservation relation:

plx,1) = f dvf(x,v,1) = f dvgeq(x,v,1).

Here, the conservation law of momentum or energy does not
exist. We can also gain further understanding about g, by
multiplying Eq. (3) with v°=1 and v' and integrating with
respect to v. With the above procedure, we could derive the
following equations:

dp d(pV)
LCAAS

0’
ot ox
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-—_ + _(Veq_ V),
pix N
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iyt
ot ox

where

_ ge (.x,l),t)
Veglp(x,0)] = J dvv—q—p(x’t) ,

1
AN
= p(x,1)

P(x,0) = plx,0{(w?) = [V(x,) P}

Obviously, g, is the mesoscopic representation of the equi-
librium velocity-density relation, i.e., the fundamental dia-
gram. P could be considered as the traffic pressure.

Next, we could obtain a formal discretized form of Eq. (3)
by use of the technique presented in Refs. [23,24].

First, we formally integrate Eq. (3) over a small time in-
terval 9,

fx+vé,v,1+6)

dvv*f(x,v,1),

1 %
=e %M (x,v,1) + Xe“s/)‘f e"“‘geq(x +ut’ v, t+1')dt .
0

(4)

Using the Taylor expansion of the right-hand side and ne-
glecting the term of O(8?), Eq. (4) yields

fx+vé,v.t+ 68) - flx,v,1)=— %_[f(x,v,t) — geq(x,0,0)],

where 7=\/6, becomes a dimensionless relaxation time.
Thus, we have completed the discretization of the time coor-
dinate. The following task is the discretization in the phase
space, i.e., in the coordinates x and v. According to realistic
situations and also for the convenience of comparison with
the existing theoretical results, we suggest using a discreti-
zation technique similar to the cellular automaton model [6]
herein. Namely, a single-lane road can be divided into a one-
dimensional array of L sites and the length of one site
is usually set to be 7.5 m. For the velocity coordinate,
we let each vehicle move with an integer velocity
v;€{0,...,Uma}> and v,y is usually set to be 5. Finally, by
using the above discretization procedure, we can give the
governing equation of the so-called lattice Boltzmann model
for traffic flow as follows:

fi(x + vigl’t + 5[) _fi(-xst) = w[f?q(-x»l) _fi(x’t)]’ (5)

where f;(x,1) denotes the distribution of the vehicles moving
with velocity v;. f;% denotes the distribution of the vehicles
moving with velocity v; when the traffic flow is under the
local equilibrium state. Obviously, f{% is the discretization
version of g, i.e., the discretized mesoscopic representation
of the equilibrium velocity-density relation. w is the dimen-
sionless relaxation factor, i.e., w=1/7. In hydrodynamics,
one can calculate the appropriate equilibrium distribution
function f;? according to the discretization method of the
phase space. But we can only write it as an undetermined
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function herein because there is no “Maxwellian distribution
function” and a lack of enough conservation laws. We can
only determine f7? through the empirical observation or mak-
ing assumptions, just as what has been done on the velocity-
density relation in the Lighthill-Whitham-Richards (LWR)
macroscopic model [9] for obtaining the closed mathematical
formulation.

C. Macroscopic dynamics of the model

In order to validate the discretization method of the phase
space and investigate the macroscopic dynamics of the
model in more detail, we need to apply the Taylor and
Chapman-Enskog expansions for solving Eq. (5). In the deri-
vation, we use the following space scale and two different
time scales:

= €t,

t1=€t,

X| = €X.

All of the variables have their respective physical meaning.
The small parameter €, which plays the role of the Knudsen
number, could be considered as the mean vehicle gap over
the length of the road. The time scale ¢ is of the order of the
time needed to approach the local equilibrium, while the
time scale 7, and space scale x; are the scales in which the
macroscopic phenomena could be observed.

We first investigate the macroscopic dynamics at the first-
order accuracy level. Using the Taylor expansion on the left-
hand side of Eq. (5) and neglecting the terms higher than the
first order [37], we could obtain

ofi
4
at

J; = w(ﬁq—fi)-

Then substituting the above equation with the following
asymptotic series

fizf‘l?q+ei1)+ ﬁ2)+-“, (6)
we get a series of equations in different orders,
afsd afse
fe +v,£+w (=0,
ﬁtl o7x1
are aft) afY
£+i+ ,j& +of? =0,
(9t2 (9t] &xl
EY . Y.0) 92
/i + i +v; i +of V=0, ...,
atz z?tl &xl
gfN-D 5 AN) oV
/; + J; +v; /; +of M =0
19[2 8[1 (9)(:1
Considering the following relations:
plen) =2 fi= 2 £ (7)
i i
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N
g0 = ple, )V, 0) = 2 fwi= 2 fCo+ 2 0,2 €fY,
i i i Jj=1
8)

[, 1) ©)

p(x,1)

and taking the summation in the above equations with re-
spect to v, we could obtain the following equations:

ap . d(pV)
ot ox

Vedlp(x,0)] = Ev( )

=0,

av. IV 1JP

— Vo=t 0(Vy-V). (10)

ot ox p Jx
Obviously, at the first-order accuracy level, the macroscopic
dynamics of the present model could be recovered as the
macroscopic equations we have derived before in Sec. II B
(one can also refer to Egs. (40) and (41) in Ref. [14]). Thus,
the discretization method of the phase space is also proved to
be reasonable.

Next, we try to investigate the macroscopic dynamics fur-

ther at the second-order accuracy level, i.e., to solve the fol-
lowing equation:

0 () (P57
2 2

+v; B U;
ot ox ox oxadt It

)i
(11)

Using the above procedure again, we first substitute Eq. (6)
into Eq. (11) and obtain the equation in the €, €', and €
orders,

€, 0=0;
afse J
I £+ ,£+w 1)=0;
g, a
e o) gy 1 PO
e, /i + /i +v; /; +of?+ - —fZ
(7t2 (?tl (9X1 2 19[1

o[l 555
+—|— =

&xl J tl 2 6x%
Considering the relations (7)—(9) and the additional fact that

()l 225

—| =5 |+v +| =5

2 &tl C?.xl (‘7 tl 2 a‘xl

(afq af?‘*) v, 9 (aﬁq af‘*‘*)
i) Ui (Y
“ 201

i

0[1 o7x1 2 (9)61 &tl (9)('1
2 (9t1 (9x1
Peg= 2 Vif{4 = plx.0) V2.
i
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we could derive the following equations by taking the sum-
mation with respect to v:

J a(pV,
P + ('D_eCQ:O’
&tl 0)6]

0 vif aE,v?f?‘*)
+

( &tl 0)61
1 1]29 V.. | dp P d(pV>
=<___)_[<Veq p_e@q)_p+_q+(p_%|2]
w 2 (9)61 (9p (?tl (?Xl (?x1

2
(11) [
w 2 (7)(1 (7x1

v aveg a(pveg)
eqt P P .
p Ix;

Finally we could obtain the equation with the normal
space and time scale,

ap  9pVe) _ ( 11 ) | Py, pVe)
at ax o 2/)dx| dx ax
V. \d(pV,
_(Veq+p_eq)(p_“L):|. (12)
dap ox

It is a density evolutionary equation and can be consid-
ered a so-called scalar model [3] [cf. Eq. (4) in Ref. [14] and
Egs. (5.7) and (5.12) in Ref. [3]]. Though it is quite complex,
we could still find the diffusionlike term in the equation.
However, it is difficult to derive directly the velocity evolu-
tionary equation at the second-order accuracy level due to
the lack of the conservation law of momentum.

In the following, the stability of the solutions to Eq. (12)
will be investigated based on the linear stability analysis
since the stability is concerned with some important realistic
phenomena, e.g., the stop-and-go traffic. We know that the
homogeneous solution of Eq. (12) is p(x,)=p, and V(x,?)
=Veq(pe). p, denotes the average vehicle density on the entire
road. Then, we suppose a small perturbation o(x,7) and the
equation for o can be obtained by substituting the relation
(13) into Eq. (12),

p(x,1) = p, + alx,1). (13)

In the substitution, the following relations must be used:

P,
o =L ) Pealb)
p dp

Ve(pe + 0) = Vei(p,) + 0(p,) 0,
0(p,+ o) =6(p,) + 0'(p,) 0,

Peg(pe + 0) =Peg(p,) + dlp,) 0,
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where the Taylor expansion is used for Vg, Py, and 6 and

terms above the first order are omitted. After some algebra,
one obtains the following linearized equation:

do

J
4 Valp) + e 0p) 1>~

ox

(L1 &0
= (w - 2)[¢(pe) - #(p.)p. Pt (14)

The following form of the perturbation wave is supposed
and substituted into Eq. (14):

o = p explikx — yt),

y=pm+iv,

where k must satisfy some certain conditions described in
Ref. [38] under the periodic boundary conditions. Finally, the
equation for w is obtained,

K2 - ) plp,) - #(p,)p:]
m= 2w '

(15)

From the above equation, the stability of Eq. (12) does not
depend on the wave number k. Moreover, considering the
general numerical stability conditions 0= w =2 [39], the sta-
bility only depends on the choice of V,(p), i.e., fi%. If the
value «=d(p,)—(p,)p> becomes negative, the homoge-
neous state loses its stability. Therefore, ﬁq must be selected
carefully for reproducing the observed rich traffic phenom-
ena.

II1. NUMERICAL SIMULATION FOR VALIDATING
THE MODEL

In order to validate further the model, we conduct some
numerical simulations. First, we must propose a specific dis-
tribution f;. Obviously, the most reliable way for this pur-
pose is to construct this distribution from the observation
data, and f;9 must have the following additional properties:
when p is very small, the equilibrium distribution ﬁ?nax of the
vehicles moving with the maximum velocity v, should be
much larger than that of the other velocities (in an ideal case,
fj?mx should be close to p). In contrast, as p is sufficiently
large, f; should be much larger than that of the other veloci-
ties. Herein, we propose the following distribution function
to describe the empirical phenomena:

2 vi2p;2
U; exXp| — ;| Pn

1—
= b (16)
» U~2p'2

1+ 07 exp| - —+—
i=1 -
Pu
fi‘}): 5 vz 2\’ (17)
1 +Ev,-2exp<— l’p ,>
i=1 -
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p'= ; (18)

where p, denotes the density at the kth sites. In this distribu-
tion function, the status of the five ahead sites have been
considered to describe the forwardly directed interactions,
since the car can move forward at most five sites (the maxi-
mum velocity has been set to be five by default); in other
words, the most important influence comes from the five
ahead sites.

For avoiding the occurrence of the nonphysical density
(greater than the maximum density), it is necessary to treat a
site as a “virtual boundary” varying with time in the numeri-
cal simulation. The fact can be easily understood as that if
there is a vehicle at the nth site at some time, the vehicles
behind this site (upstream) cannot go through or into this
site. Thus, the behavior of the site is very similar with that of
the boundary varying with time in the hydrodynamic re-
search [40]. To explain more clearly, for the nth site, the sum
of the distribution which will transfer into or stay at this site
cannot exceed the maximum possible maximum density
Pmax- 1f p, at the destination nth site for a distribution f; of
v;# 0 at the kth site (behind the nth site) already reaches the
maximum density, f; should be converted into f,_; (equiva-
lently as the slowing down process). In addition, since dif-
ferent distributions (five by default) at different upstream
sites can transfer into one destination site, the priority is
determined according to the distance from the destination
site, and the shorter distance means the higher priority.
Therefore, the actual interaction-transfer process of the dis-
tribution function can be divided into the following three
substeps: (1) Distribution updates according to Egs.
(16)—(18); (2) distribution updates due to the “virtual bound-
ary”; (3) transfer of the distribution function [41].

Before conducting the specific simulations, some charac-
teristics of the model with Egs. (16)—(18) can be discussed
by using the result of the above linear stability analysis.
Since the homogeneous solution p, is a constant, one can
obtain the fundamental diagrams [see Fig. 1(a)] assumed by
Egs. (16)—(18). The stability region of Eq. (12) is shown in
Fig. 1(b). Thus, one can predict that the discrete model equa-
tion (5) with Egs. (16)—(18) may capture some basic inter-
esting traffic phenomena, e.g., stop-and-go traffic. The con-
clusion will be verified further by the following numerical
simulations.

First, we check the ability for reproducing the fundamen-
tal diagram. For this purpose, a system of 10 000 sites is
considered under the periodic boundary conditions. The
length of each site is set to be 7.5 m (i.e., a road of 75 km
long is simulated). &, (the time step) is set to be 1 s and v,
is set to be 5 sites/time step (i.e., 135 km/h). Vehicles are
initially distributed randomly on the sites, after a transient
period #, (,=2000 time steps); we calculate the space-
averaged velocity at each time step in the period of 7 (1000
time steps) and then make the time average for these velocity
values. Thus we obtained the average flow in one run, i.e.,
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FIG. 1. (a) The fundamental diagram assumed by Egs.
(16)—(18); (b) the stability region given that the road has an infinite
length of Eq. (12). Only the value of k= ¢(p,)— Gz(pg)pz is depicted.

1 T 1 N [ Umax
<61> = ;,E _2 ( E vn,ifn,i) >

=1 Nn:l i=0

where N denotes the total number of sites and n the position
of f;. {g) is the average flow. In Fig. 2, each point represents
an average value of 10 runs [42].

In Fig. 2, we show the simulation result of the fundamen-
tal diagram. For the convenience of comparison, we also
present the result obtained with the NaSch model [6] in Fig.
2, and moreover, one can compare the result with the obser-
vation (e.g., Fig. 5 in Ref. [6]). The numerical result shows
that the present discrete model can reproduce the fundamen-
tal diagram with the chosen /7. The most basic physical fact,
i.e., the phase transition from the free flow to the congested
flow, can be explained, especially, the computational speed
for obtaining the fundamental diagram is considerably high
since the statistical noise is reduced in this discrete kinetics
model, i.e., the computational time for the averaging process
can be saved. In addition, we notice that the computational
resource needed for the simulation based on the present
model does not depend on the number of vehicles. Thus,
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FIG. 2. The simulation result of the fundamental diagram ob-
tained with the present lattice Boltzmann model. For comparison,
the result of the NaSch model (with the randomization probability

P4,.=0.05) is also presented.

compared with microscopic models, the model has certain
advantages when the number of vehicles is large.
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the initial time. For convenience, the periodic boundary con-
dition is also adopted and for reducing the finite size effect as
much as possible, a system of 100 000 sites (750 km) is
considered while only the traffic situation on a section will
be observed. At the beginning of the simulation, we assume
an equilibrium traffic state and a localized density perturba-
tion is added in a certain road section. The simulation results
are presented in Fig. 3.

The simulations show that with the present f;9, the model
can capture the basic physical phenomena, such as the meta-
stability [Figs. 3(b) and 3(c)] and stop-and-go traffic [Fig.
3(d)]. When the density is small enough the system is stable
[Fig. 3(a)]. The results confirm the conclusion of the linear

stability analysis of Eq. (12).

IV. DISCUSSION AND CONCLUDING REMARKS

In summary, we have proposed a lattice Boltzmann model
for traffic flow. The model could be considered as a discrete
version of kinetic models and derived formally from the ex-
isting continuous kinetic models. The proposed model has
been confirmed to overcome the principal drawback of the
latter: the integro-differential nature. In order to validate the
discretization method of the phase space and investigate the

In order to investigate numerically the detailed character-

istics of the model, a small perturbation will be introduced at macroscopic dynamics of the model in more details, we have

(a) ()

22
Density ?(8)
16 Density1 gg
14
12 60
220 40
220
44
Density 42
40 100
38 Density gq
220 ®
40
220

FIG. 3. Spatial-temporal evolution of the traffic density p(x,7). A system of 100 000 sites (750 km) is modeled and the section
30 000th—40 000th site (75 km) is observed. A 500-site (3.75 km) wide localized perturbation is added. For the convenience of observation,
the perturbation will be added in the different road section for the four simulations. The amplitude of the perturbation is (a) 0.05 (6.7
vehicles/km) for free and stable traffic at the initial homogeneous density 0.1 (13.3 vehicles/km); (b) 0.05 for metastable traffic at 0.265 (35.3
vehicles/km); (c) 0.15 (20 vehicles/km) at 0.265; (d) 0.05 for unstable traffic at 0.4 (53.3 vehicles/km). The unit for time in the figures is

minutes, and the units for density and space are scaled to vehicles/km and km, respectively.
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applied the Taylor expansion and Chapman-Enskog expan-
sion to study the model equation. The first- and second-order
macroscopic dynamics are derived and the discretization
method of the phase space is shown to be appropriate. In
addition, the stability of the derived second-order macro-
scopic equation is analyzed based on the linear stability
theory. The analysis shows that the stability of the model
depends mainly on the choice of the local equilibrium veloc-
ity distribution function.

By choosing an appropriate local equilibrium velocity dis-
tribution function, we have run simulations to verify the ca-
pability of the model for simulating traffic flow. It has been
found that the model could reproduce the fundamental dia-
gram. The most basic physical fact of the phase transition
from the free flow to the congested flow could be explained.

PHYSICAL REVIEW E 77, 036108 (2008)

Further simulations show the model could capture the basic
physical phenomena, such as the metastability and stop-
and-go traffic.
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